laexc(3) LAPACK laexc(3)

laexc - laexc: reorder Schur form


subroutine dlaexc (wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)
DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation. subroutine slaexc (wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)
SLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.

DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.

Purpose:

 DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
 an upper quasi-triangular matrix T by an orthogonal similarity
 transformation.
 T must be in Schur canonical form, that is, block upper triangular
 with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
 has its diagonal elements equal and its off-diagonal elements of
 opposite sign.

Parameters

WANTQ

          WANTQ is LOGICAL
          = .TRUE. : accumulate the transformation in the matrix Q;
          = .FALSE.: do not accumulate the transformation.

N

          N is INTEGER
          The order of the matrix T. N >= 0.

T

          T is DOUBLE PRECISION array, dimension (LDT,N)
          On entry, the upper quasi-triangular matrix T, in Schur
          canonical form.
          On exit, the updated matrix T, again in Schur canonical form.

LDT

          LDT is INTEGER
          The leading dimension of the array T. LDT >= max(1,N).

Q

          Q is DOUBLE PRECISION array, dimension (LDQ,N)
          On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
          On exit, if WANTQ is .TRUE., the updated matrix Q.
          If WANTQ is .FALSE., Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.

J1

          J1 is INTEGER
          The index of the first row of the first block T11.

N1

          N1 is INTEGER
          The order of the first block T11. N1 = 0, 1 or 2.

N2

          N2 is INTEGER
          The order of the second block T22. N2 = 0, 1 or 2.

WORK

          WORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          = 1: the transformed matrix T would be too far from Schur
               form; the blocks are not swapped and T and Q are
               unchanged.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

SLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.

Purpose:

 SLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
 an upper quasi-triangular matrix T by an orthogonal similarity
 transformation.
 T must be in Schur canonical form, that is, block upper triangular
 with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
 has its diagonal elements equal and its off-diagonal elements of
 opposite sign.

Parameters

WANTQ

          WANTQ is LOGICAL
          = .TRUE. : accumulate the transformation in the matrix Q;
          = .FALSE.: do not accumulate the transformation.

N

          N is INTEGER
          The order of the matrix T. N >= 0.

T

          T is REAL array, dimension (LDT,N)
          On entry, the upper quasi-triangular matrix T, in Schur
          canonical form.
          On exit, the updated matrix T, again in Schur canonical form.

LDT

          LDT is INTEGER
          The leading dimension of the array T. LDT >= max(1,N).

Q

          Q is REAL array, dimension (LDQ,N)
          On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
          On exit, if WANTQ is .TRUE., the updated matrix Q.
          If WANTQ is .FALSE., Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.

J1

          J1 is INTEGER
          The index of the first row of the first block T11.

N1

          N1 is INTEGER
          The order of the first block T11. N1 = 0, 1 or 2.

N2

          N2 is INTEGER
          The order of the second block T22. N2 = 0, 1 or 2.

WORK

          WORK is REAL array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          = 1: the transformed matrix T would be too far from Schur
               form; the blocks are not swapped and T and Q are
               unchanged.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Generated automatically by Doxygen for LAPACK from the source code.

Fri Aug 9 2024 02:33:22 Version 3.12.0