la_hercond(3) LAPACK la_hercond(3)

la_hercond - la_hercond: Skeel condition number estimate


real function cla_hercond_c (uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices. real function cla_hercond_x (uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices. real function cla_syrcond_c (uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices. real function cla_syrcond_x (uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
CLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices. double precision function dla_syrcond (uplo, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)
DLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix. real function sla_syrcond (uplo, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)
SLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix. double precision function zla_hercond_c (uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
ZLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices. double precision function zla_hercond_x (uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices. double precision function zla_syrcond_c (uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
ZLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices. double precision function zla_syrcond_x (uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
ZLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices.

CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices.

Purpose:

    CLA_HERCOND_C computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a REAL vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CHETRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.

C

          C is REAL array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C)).

CAPPLY

          CAPPLY is LOGICAL
     If .TRUE. then access the vector C in the formula above.

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX array, dimension (2*N).
     Workspace.

RWORK

          RWORK is REAL array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.

Purpose:

    CLA_HERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CHETRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.

X

          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X).

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX array, dimension (2*N).
     Workspace.

RWORK

          RWORK is REAL array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

CLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.

Purpose:

    CLA_SYRCOND_C Computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a REAL vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CSYTRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CSYTRF.

C

          C is REAL array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C)).

CAPPLY

          CAPPLY is LOGICAL
     If .TRUE. then access the vector C in the formula above.

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX array, dimension (2*N).
     Workspace.

RWORK

          RWORK is REAL array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

CLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices.

Purpose:

    CLA_SYRCOND_X Computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CSYTRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CSYTRF.

X

          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X).

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX array, dimension (2*N).
     Workspace.

RWORK

          RWORK is REAL array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

DLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix.

Purpose:

    DLA_SYRCOND estimates the Skeel condition number of  op(A) * op2(C)
    where op2 is determined by CMODE as follows
    CMODE =  1    op2(C) = C
    CMODE =  0    op2(C) = I
    CMODE = -1    op2(C) = inv(C)
    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
    is computed by computing scaling factors R such that
    diag(R)*A*op2(C) is row equilibrated and computing the standard
    infinity-norm condition number.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
     On entry, the N-by-N matrix A.

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is DOUBLE PRECISION array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by DSYTRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by DSYTRF.

CMODE

          CMODE is INTEGER
     Determines op2(C) in the formula op(A) * op2(C) as follows:
     CMODE =  1    op2(C) = C
     CMODE =  0    op2(C) = I
     CMODE = -1    op2(C) = inv(C)

C

          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * op2(C).

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is DOUBLE PRECISION array, dimension (3*N).
     Workspace.

IWORK

          IWORK is INTEGER array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

SLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix.

Purpose:

    SLA_SYRCOND estimates the Skeel condition number of  op(A) * op2(C)
    where op2 is determined by CMODE as follows
    CMODE =  1    op2(C) = C
    CMODE =  0    op2(C) = I
    CMODE = -1    op2(C) = inv(C)
    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
    is computed by computing scaling factors R such that
    diag(R)*A*op2(C) is row equilibrated and computing the standard
    infinity-norm condition number.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is REAL array, dimension (LDA,N)
     On entry, the N-by-N matrix A.

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is REAL array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by SSYTRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by SSYTRF.

CMODE

          CMODE is INTEGER
     Determines op2(C) in the formula op(A) * op2(C) as follows:
     CMODE =  1    op2(C) = C
     CMODE =  0    op2(C) = I
     CMODE = -1    op2(C) = inv(C)

C

          C is REAL array, dimension (N)
     The vector C in the formula op(A) * op2(C).

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is REAL array, dimension (3*N).
     Workspace.

IWORK

          IWORK is INTEGER array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices.

Purpose:

    ZLA_HERCOND_C computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX*16 array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by ZHETRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.

C

          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C)).

CAPPLY

          CAPPLY is LOGICAL
     If .TRUE. then access the vector C in the formula above.

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX*16 array, dimension (2*N).
     Workspace.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.

Purpose:

    ZLA_HERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX*16 vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A.

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX*16 array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by ZHETRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.

X

          X is COMPLEX*16 array, dimension (N)
     The vector X in the formula op(A) * diag(X).

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX*16 array, dimension (2*N).
     Workspace.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.

Purpose:

    ZLA_SYRCOND_C Computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX*16 array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by ZSYTRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by ZSYTRF.

C

          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C)).

CAPPLY

          CAPPLY is LOGICAL
     If .TRUE. then access the vector C in the formula above.

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX*16 array, dimension (2*N).
     Workspace.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices.

Purpose:

    ZLA_SYRCOND_X Computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX*16 vector.

Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A.

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX*16 array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by ZSYTRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by ZSYTRF.

X

          X is COMPLEX*16 array, dimension (N)
     The vector X in the formula op(A) * diag(X).

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX*16 array, dimension (2*N).
     Workspace.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Generated automatically by Doxygen for LAPACK from the source code.

Fri Aug 9 2024 02:33:22 Version 3.12.0