gemqrt(3) | LAPACK | gemqrt(3) |
gemqrt - gemqrt: multiply by Q from geqrt
subroutine cgemqrt (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
CGEMQRT subroutine dgemqrt (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
DGEMQRT subroutine sgemqrt (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
SGEMQRT subroutine zgemqrt (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
ZGEMQRT
CGEMQRT
Purpose:
CGEMQRT overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'C': Q**H C C Q**H where Q is a complex orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**H generated using the compact WY representation as returned by CGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
NB
NB is INTEGER The block size used for the storage of T. K >= NB >= 1. This must be the same value of NB used to generate T in CGEQRT.
V
V is COMPLEX array, dimension (LDV,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGEQRT in the first K columns of its array argument A.
LDV
LDV is INTEGER The leading dimension of the array V. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N).
T
T is COMPLEX array, dimension (LDT,K) The upper triangular factors of the block reflectors as returned by CGEQRT, stored as a NB-by-N matrix.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= NB.
C
C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX array. The dimension of WORK is N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
DGEMQRT
Purpose:
DGEMQRT overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'T': Q**T C C Q**T where Q is a real orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**T generated using the compact WY representation as returned by DGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Transpose, apply Q**T.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
NB
NB is INTEGER The block size used for the storage of T. K >= NB >= 1. This must be the same value of NB used to generate T in DGEQRT.
V
V is DOUBLE PRECISION array, dimension (LDV,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRT in the first K columns of its array argument A.
LDV
LDV is INTEGER The leading dimension of the array V. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N).
T
T is DOUBLE PRECISION array, dimension (LDT,K) The upper triangular factors of the block reflectors as returned by DGEQRT, stored as a NB-by-N matrix.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= NB.
C
C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is DOUBLE PRECISION array. The dimension of WORK is N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
SGEMQRT
Purpose:
SGEMQRT overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'T': Q**T C C Q**T where Q is a real orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**T generated using the compact WY representation as returned by SGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
NB
NB is INTEGER The block size used for the storage of T. K >= NB >= 1. This must be the same value of NB used to generate T in SGEQRT.
V
V is REAL array, dimension (LDV,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by SGEQRT in the first K columns of its array argument A.
LDV
LDV is INTEGER The leading dimension of the array V. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N).
T
T is REAL array, dimension (LDT,K) The upper triangular factors of the block reflectors as returned by SGEQRT, stored as a NB-by-N matrix.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= NB.
C
C is REAL array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is REAL array. The dimension of WORK is N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
ZGEMQRT
Purpose:
ZGEMQRT overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'C': Q**H C C Q**H where Q is a complex orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**H generated using the compact WY representation as returned by ZGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
NB
NB is INTEGER The block size used for the storage of T. K >= NB >= 1. This must be the same value of NB used to generate T in ZGEQRT.
V
V is COMPLEX*16 array, dimension (LDV,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ZGEQRT in the first K columns of its array argument A.
LDV
LDV is INTEGER The leading dimension of the array V. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N).
T
T is COMPLEX*16 array, dimension (LDT,K) The upper triangular factors of the block reflectors as returned by ZGEQRT, stored as a NB-by-N matrix.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= NB.
C
C is COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX*16 array. The dimension of WORK is N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Generated automatically by Doxygen for LAPACK from the source code.
Fri Aug 9 2024 02:33:22 | Version 3.12.0 |