gbrfs(3) | LAPACK | gbrfs(3) |
gbrfs - gbrfs: iterative refinement
subroutine cgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CGBRFS subroutine dgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DGBRFS subroutine sgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SGBRFS subroutine zgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb,
ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZGBRFS
CGBRFS
Purpose:
CGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution.
Parameters
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB
AFB is COMPLEX array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by CGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAFB
LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices from CGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).
B
B is COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by CGBTRS. On exit, the improved solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX array, dimension (2*N)
RWORK
RWORK is REAL array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
DGBRFS
Purpose:
DGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution.
Parameters
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB
AFB is DOUBLE PRECISION array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by DGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAFB
LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices from DGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DGBTRS. On exit, the improved solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
SGBRFS
Purpose:
SGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution.
Parameters
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
AB
AB is REAL array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB
AFB is REAL array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by SGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAFB
LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices from SGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).
B
B is REAL array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is REAL array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by SGBTRS. On exit, the improved solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is REAL array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
ZGBRFS
Purpose:
ZGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution.
Parameters
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB
AFB is COMPLEX*16 array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by ZGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAFB
LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices from ZGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).
B
B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZGBTRS. On exit, the improved solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX*16 array, dimension (2*N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Generated automatically by Doxygen for LAPACK from the source code.
Fri Aug 9 2024 02:33:22 | Version 3.12.0 |