geo(2rheolef) geo(2rheolef)

geo - finite element mesh (rheolef-7.2)

This class is a container for distributed finite element meshes. It is mainly a table of geo_element(6). Let omega be a geo: then, its i-th element is K = omega[i].

In addition, the geo class provides accessors to nodes. Let jv = K[j] be the vertex index of the j-th vertex of the geo_element(6) K. Then, the physical coordinates of this vertex are given by omega.node(jv).

Finally, the geo class provides a list of domains, e.g. some parts of the boundary. A domain named 'left' obtain via omega['left'] and this accessor returns the domain as a geo object, i.e. a table of geo_element(6).

Lower dimension geo_element(6) could be acceded via omega.get_geo_element (subdim, i). E.g. when subdim=1 we obtain the i-th edge of the mesh.

The following code lists all elements and nodes of the mesh.

  cout << omega.size() << " " << omega.n_node() << endl;
  for (size_t i = 0, n = omega.size(); i < n; ++i) {
    const geo_element& K = omega[i];
    cout << K.name();
    for (size_t j = 0, m = K.size(); j < m; ++j)
      cout << " " << K[j];
    cout << endl;
  }
  for (size_t jv = 0, nv = omega.n_node(); jv < nv; ++jv)
    cout << omega.node(jv) << endl;

In a distributed environment, the accessors are similar to those of the disarray(4) class. Let dis_i be the index of an element in the global mesh. Then omega.dis_get_geo_element (dim, dis_i) returns the corresponding geo_element(6). Elements at the neighbour of partition boundaries are available for such a global access. For others elements, that belong to others partitions, communications should be organized as for the disarray(4) class.

This documentation has been generated from file main/lib/geo.h

The geo class is an alias to the geo_basic class

typedef geo_basic<Float,rheo_default_memory_model> geo;

The geo_basic class provides an interface, via the smart_pointer(7) class family, to a mesh container:

template <class T>
class geo_basic<T,sequential> : public smart_pointer_clone<geo_abstract_rep<T,sequential> > {
public:
// typedefs:
    typedef sequential                              memory_type;
    typedef geo_abstract_rep<T,sequential>          rep;
    typedef geo_rep<T,sequential>                   rep_geo_rep;
    typedef smart_pointer_clone<rep>                base;
    typedef typename rep::size_type                 size_type;
    typedef typename rep::node_type                 node_type;
    typedef typename rep::variant_type              variant_type;
    typedef typename rep::reference                 reference;
    typedef typename rep::const_reference           const_reference;
    typedef typename rep::iterator                  iterator;
    typedef typename rep::const_iterator            const_iterator;
    typedef typename rep::iterator_by_variant       iterator_by_variant;
    typedef typename rep::const_iterator_by_variant const_iterator_by_variant;
    typedef typename rep::coordinate_type           coordinate_type;
    typedef typename rep::geo_element_map_type      geo_element_map_type;
// allocators:
    geo_basic ();
    geo_basic (std::string name, const communicator& comm = communicator());
    void load (std::string name, const communicator& comm = communicator());
    geo_basic (const domain_indirect_basic<sequential>& dom, const geo_basic<T,sequential>& omega);
    // build from_list (for level set)
    geo_basic (
      const geo_basic<T,sequential>&                      lambda,
      const disarray<point_basic<T>,sequential>&          node_list,
      const std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential>,
                         reference_element::max_variant>& elt_list)
    : base (new_macro(rep_geo_rep(lambda,node_list,elt_list))) {}
// accessors:
    std::string                    name() const { return base::data().name(); }
    std::string              familyname() const { return base::data().familyname(); }
    size_type                 dimension() const { return base::data().dimension(); }
    size_type             map_dimension() const { return base::data().map_dimension(); }
    bool                      is_broken() const { return base::data().is_broken(); }
    size_type             serial_number() const { return base::data().serial_number(); }
    size_type                   variant() const { return base::data().variant(); }
    coordinate_type   coordinate_system() const { return base::data().coordinate_system(); }
    std::string  coordinate_system_name() const { return space_constant::coordinate_system_name(coordinate_system()); }
    const basis_basic<T>& get_piola_basis() const { return base::data().get_piola_basis(); }
    size_type                     order() const { return base::data().get_piola_basis().degree(); }
    const node_type&               xmin() const { return base::data().xmin(); }
    const node_type&               xmax() const { return base::data().xmax(); }
    const T&                       hmin() const { return base::data().hmin(); }
    const T&                       hmax() const { return base::data().hmax(); }
    const distributor& geo_element_ownership(size_type dim) const { return base::data().geo_element_ownership(dim); }
    const geo_size&      sizes()             const { return base::data().sizes(); }
    const geo_size&  ios_sizes()             const { return base::data().ios_sizes(); }
    const_reference get_geo_element (size_type dim, size_type ige) const { return base::data().get_geo_element (dim, ige); }
    const_reference dis_get_geo_element (size_type dim, size_type dis_ige) const
                { return get_geo_element (dim, dis_ige); }
    const geo_element& bgd2dom_geo_element (const geo_element& bgd_K) const { return base::data().bgd2dom_geo_element (bgd_K); }
    const geo_element& dom2bgd_geo_element (const geo_element& dom_K) const { return base::data().dom2bgd_geo_element (dom_K); }
    size_type neighbour (size_type ie, size_type loc_isid) const {
                          return base::data().neighbour (ie, loc_isid); }
    void neighbour_guard() const { base::data().neighbour_guard(); }
    size_type        n_node()   const { return base::data().n_node(); }
    const node_type&     node(size_type     inod) const { return base::data().node(inod); }
    const node_type& dis_node(size_type dis_inod) const { return base::data().dis_node(dis_inod); }
    void dis_inod (const geo_element& K, std::vector<size_type>& dis_inod) const {
                return base::data().dis_inod(K,dis_inod); }
    const disarray<node_type,sequential>& get_nodes() const { return base::data().get_nodes(); }
    size_type dis_inod2dis_iv (size_type dis_inod) const { return base::data().dis_inod2dis_iv(dis_inod); }
    size_type n_domain_indirect () const { return base::data().n_domain_indirect (); }
    bool have_domain_indirect (const std::string& name) const { return base::data().have_domain_indirect (name); }
    const domain_indirect_basic<sequential>& get_domain_indirect (size_type i) const {
          return base::data().get_domain_indirect (i); }
    const domain_indirect_basic<sequential>& get_domain_indirect (const std::string& name) const {
          return base::data().get_domain_indirect (name); }
    void  insert_domain_indirect (const domain_indirect_basic<sequential>& dom) const {
          base::data().insert_domain_indirect (dom); }
    size_type n_domain () const { return base::data().n_domain_indirect (); }
    geo_basic<T,sequential> get_domain (size_type i) const;
    geo_basic<T,sequential> operator[] (const std::string& name) const;
    geo_basic<T,sequential> boundary() const;
    geo_basic<T,sequential> internal_sides() const;
    geo_basic<T,sequential> sides() const;
// modifiers:
    void set_name (std::string name);
    void set_dimension (size_type dim);
    void set_serial_number (size_type i);
    void reset_order (size_type order);
    void set_coordinate_system (coordinate_type sys_coord);
    void set_coordinate_system (std::string sys_coord_name) { set_coordinate_system (space_constant::coordinate_system(sys_coord_name)); }
    void set_nodes (const disarray<node_type,sequential>& x);
// extended accessors:
    const communicator& comm()        const { return geo_element_ownership (0).comm(); }
    size_type     size(size_type dim) const { return base::data().geo_element_ownership(dim).size(); }
    size_type dis_size(size_type dim) const { return base::data().geo_element_ownership(dim).dis_size(); }
    size_type     size()              const { return size     (map_dimension()); }
    size_type dis_size()              const { return dis_size (map_dimension()); }
    size_type     n_vertex()          const { return size     (0); }
    size_type dis_n_vertex()          const { return dis_size (0); }
    const_reference operator[] (size_type ie) const { return get_geo_element (map_dimension(), ie); }
    const_iterator begin (size_type dim) const { return base::data().begin(dim); }
    const_iterator end   (size_type dim) const { return base::data().end  (dim); }
    const_iterator begin ()              const { return begin(map_dimension()); }
    const_iterator end   ()              const { return end  (map_dimension()); }
// comparator:
    bool operator== (const geo_basic<T,sequential>& omega2) const { return base::data().operator== (omega2.data()); }
// i/o:
    void save (std::string filename = "") const;

};
template <class T, class M>
idiststream& operator>> (idiststream& ips, geo_basic<T,M>& omega);
template <class T, class M>
odiststream& operator<< (odiststream& ops, const geo_basic<T,M>& omega);

Pierre Saramito <Pierre.Saramito@imag.fr>

Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito@imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.

Version 7.2 rheolef