vw - Vowpal Wabbit -- fast online learning tool
- --hash arg
- how to hash the features. Available options: strings, all
- --hash_seed
arg (=0)
- seed for hash function
- --ignore
arg
- ignore namespaces beginning with character <arg>
- --ignore_linear
arg
- ignore namespaces beginning with character <arg> for linear terms
only
- --keep arg
- keep namespaces beginning with character <arg>
- --redefine
arg
- redefine namespaces beginning with characters of string S as namespace N.
<arg> shall be in form 'N:=S' where := is operator. Empty N or S are
treated as default namespace. Use ':' as a wildcard in S.
- -b [ --bit_precision ]
arg
- number of bits in the feature table
- --noconstant
- Don't add a constant feature
- -C [ --constant ]
arg
- Set initial value of constant
- --ngram arg
- Generate N grams. To generate N grams for a single namespace 'foo', arg
should be fN.
- --skips arg
- Generate skips in N grams. This in conjunction with the ngram tag can be
used to generate generalized n-skip-k-gram. To generate n-skips for a
single namespace 'foo', arg should be fN.
- --feature_limit
arg
- limit to N features. To apply to a single namespace 'foo', arg should be
fN
- --affix arg
- generate prefixes/suffixes of features; argument '+2a,-3b,+1' means
generate 2-char prefixes for namespace a, 3-char suffixes for b and 1 char
prefixes for default namespace
- --spelling
arg
- compute spelling features for a give namespace (use '_' for default
namespace)
- --dictionary
arg
- read a dictionary for additional features (arg either 'x:file' or just
'file')
- --dictionary_path
arg
- look in this directory for dictionaries; defaults to current directory or
env{PATH}
- --interactions
arg
- Create feature interactions of any level between namespaces.
- --permutations
- Use permutations instead of combinations for feature interactions of same
namespace.
- --leave_duplicate_interactions
- Don't remove interactions with duplicate combinations of namespaces. For
ex. this is a duplicate: '-q ab -q ba' and a lot more in '-q
::'.
- -q [ --quadratic ]
arg
- Create and use quadratic features
- --q: arg
- : corresponds to a wildcard for all printable characters
- --cubic arg
- Create and use cubic features
- -t [ --testonly
]
- Ignore label information and just test
- --holdout_off
- no holdout data in multiple passes
- --holdout_period
arg (=10)
- holdout period for test only
- --holdout_after
arg
- holdout after n training examples, default off (disables
holdout_period)
- --early_terminate
arg (=3)
- Specify the number of passes tolerated when holdout loss doesn't decrease
before early termination
- --passes
arg
- Number of Training Passes
- --initial_pass_length
arg
- initial number of examples per pass
- --examples
arg
- number of examples to parse
- --min_prediction
arg
- Smallest prediction to output
- --max_prediction
arg
- Largest prediction to output
- --sort_features
- turn this on to disregard order in which features have been defined. This
will lead to smaller cache sizes
- --loss_function
arg (=squared)
- Specify the loss function to be used, uses squared by default. Currently
available ones are squared, classic, hinge, logistic, quantile and
poisson.
- --quantile_tau
arg (=0.5)
- Parameter \tau associated with Quantile loss. Defaults to 0.5
- --l1 arg
- l_1 lambda
- --l2 arg
- l_2 lambda
- --no_bias_regularization
arg
- no bias in regularization
- --named_labels
arg
- use names for labels (multiclass, etc.) rather than integers, argument
specified all possible labels, comma-sep, eg "--named_labels
Noun,Verb,Adj,Punc"
- --audit_regressor
arg
- stores feature names and their regressor values. Same dataset must be used
for both regressor training and this mode.
- --search
arg
- Use learning to search, argument=maximum action id or 0 for LDF
- --search_task
arg
- the search task (use "--search_task list" to get a list of
available tasks)
- --search_metatask
arg
- the search metatask (use "--search_metatask list" to get a list
of available metatasks)
- --search_interpolation
arg
- at what level should interpolation happen? [*data|policy]
- --search_rollout
arg
- how should rollouts be executed? [policy|oracle|*mix_per_state|mix_p
- er_roll|none]
- --search_rollin
arg
- how should past trajectories be generated? [policy|oracle|*mix_per_stat
e|mix_per_roll]
- --search_passes_per_policy
arg (=1)
- number of passes per policy (only valid for
search_interpolation=policy)
- --search_beta
arg (=0.5)
- interpolation rate for policies (only valid for
search_interpolation=policy)
- --search_alpha
arg (=1.00000001e-10)
- annealed beta = 1-(1-alpha)^t (only valid for
search_interpolation=data)
- --search_total_nb_policies
arg
- if we are going to train the policies through multiple separate calls to
vw, we need to specify this parameter and tell vw how many policies are
eventually going to be trained
- --search_trained_nb_policies
arg
- the number of trained policies in a file
- --search_allowed_transitions
arg
- read file of allowed transitions [def: all transitions are allowed]
- --search_subsample_time
arg
- instead of training at all timesteps, use a subset. if value in (0,1),
train on a random v%. if v>=1, train on precisely v steps per example,
if v<=-1, use active learning
- --search_neighbor_features
arg
- copy features from neighboring lines. argument looks like: '-1:a,+2'
meaning copy previous line namespace a and next next line from namespace
_unnamed_, where ',' separates them
- --search_rollout_num_steps
arg
- how many calls of "loss" before we stop really predicting on
rollouts and switch to oracle (default means "infinite")
- --search_history_length
arg (=1)
- some tasks allow you to specify how much history their depend on; specify
that here
- --search_no_caching
- turn off the built-in caching ability (makes things slower, but
technically more safe)
- --search_xv
- train two separate policies, alternating prediction/learning
- --search_perturb_oracle
arg (=0)
- perturb the oracle on rollin with this probability
- --search_linear_ordering
- insist on generating examples in linear order (def: hoopla
permutation)
- --search_active_verify
arg
- verify that active learning is doing the right thing (arg = multiplier,
should be = cost_range * range_c)
- --search_save_every_k_runs
arg
- save model every k runs
Experience Replay:
- --replay_c
arg
- use experience replay at a specified level [b=classification/regression,
m=multiclass, c=cost sensitive] with specified buffer size
- --replay_c_count
arg (=1)
- how many times (in expectation) should each example be played (default: 1
= permuting)
- --cb_adf
- Do Contextual Bandit learning with multiline action dependent
features.
- --rank_all
- Return actions sorted by score order
- --no_predict
- Do not do a prediction when training
- --cb_type arg
(=ips)
- contextual bandit method to use in {ips,dm,dr, mtr}
- --cb arg
- Use contextual bandit learning with <k> costs
- --cb_type arg
(=dr)
- contextual bandit method to use in {ips,dm,dr}
- --eval
- Evaluate a policy rather than optimizing.
- --csoaa_ldf
arg
- Use one-against-all multiclass learning with label dependent
features.
- --ldf_override
arg
- Override singleline or multiline from csoaa_ldf or wap_ldf, eg if stored
in file
- --csoaa_rank
- Return actions sorted by score order
- --probabilities
- predict probabilites of all classes
- --wap_ldf
arg
- Use weighted all-pairs multiclass learning with label dependent
features.
- Specify singleline or multiline.
- --interact
arg
- Put weights on feature products from namespaces <n1> and
<n2>
Experience Replay:
- --replay_m
arg
- use experience replay at a specified level [b=classification/regression,
m=multiclass, c=cost sensitive] with specified buffer size
- --replay_m_count
arg (=1)
- how many times (in expectation) should each example be played (default: 1
= permuting)
- --binary
- report loss as binary classification on -1,1
- --lrqfa arg
- use low rank quadratic features with field aware weights
- --lrq arg
- use low rank quadratic features
- --lrqdropout
- use dropout training for low rank quadratic features
- --nn arg
- Sigmoidal feedforward network with <k> hidden units
- --inpass
- Train or test sigmoidal feedforward network with input passthrough.
- --multitask
- Share hidden layer across all reduced tasks.
- --dropout
- Train or test sigmoidal feedforward network using dropout.
- --meanfield
- Train or test sigmoidal feedforward network using mean field.
Experience Replay:
- --replay_b
arg
- use experience replay at a specified level [b=classification/regression,
m=multiclass, c=cost sensitive] with specified buffer size
- --replay_b_count
arg (=1)
- how many times (in expectation) should each example be played (default: 1
= permuting)
- --baseline
- Learn an additive baseline (from constant features) and a residual
separately in regression.
- --lr_multiplier
arg
- learning rate multiplier for baseline model
- --global_only
- use separate example with only global constant for baseline
predictions
- --check_enabled
- only use baseline when the example contains enabled flag