OPENSSL-CA(1SSL) | OpenSSL | OPENSSL-CA(1SSL) |
openssl-ca - sample minimal CA application
openssl ca [-help] [-verbose] [-quiet] [-config filename] [-name section] [-section section] [-gencrl] [-revoke file] [-valid file] [-status serial] [-updatedb] [-crl_reason reason] [-crl_hold instruction] [-crl_compromise time] [-crl_CA_compromise time] [-crl_lastupdate date] [-crl_nextupdate date] [-crldays days] [-crlhours hours] [-crlsec seconds] [-crlexts section] [-startdate date] [-not_before date] [-enddate date] [-not_after date] [-days arg] [-md arg] [-policy arg] [-keyfile filename|uri] [-keyform DER|PEM|P12|ENGINE] [-key arg] [-passin arg] [-cert file] [-certform DER|PEM|P12] [-selfsign] [-in file] [-inform DER|<PEM>] [-out file] [-notext] [-dateopt] [-outdir dir] [-infiles] [-spkac file] [-ss_cert file] [-preserveDN] [-noemailDN] [-batch] [-msie_hack] [-extensions section] [-extfile section] [-subj arg] [-utf8] [-sigopt nm:v] [-vfyopt nm:v] [-create_serial] [-rand_serial] [-multivalue-rdn] [-rand files] [-writerand file] [-engine id] [-provider name] [-provider-path path] [-propquery propq] [certreq...]
This command emulates a CA application. See the WARNINGS especially when considering to use it productively.
It generates certificates bearing X.509 version 3. Unless specified otherwise, key identifier extensions are included as described in x509v3_config(5).
It can be used to sign certificate requests (CSRs) in a variety of forms and generate certificate revocation lists (CRLs). It also maintains a text database of issued certificates and their status. When signing certificates, a single request can be specified with the -in option, or multiple requests can be processed by specifying a set of certreq files after all options.
Note that there are also very lean ways of generating certificates: the req and x509 commands can be used for directly creating certificates. See openssl-req(1) and openssl-x509(1) for details.
The descriptions of the ca command options are divided into each purpose.
This often needs to be given while signing too, because the self-signature of a certificate signing request (CSR) is verified against the included public key, and that verification may need its own set of options.
A consequence of using -selfsign is that the self-signed certificate appears among the entries in the certificate database (see the configuration option database), and uses the same serial number counter as all other certificates sign with the self-signed certificate.
This overrides the -days option.
Regardless of the option -not_before, the days are always counted from today. When used together with the option -not_after/-startdate, the explicit expiry date takes precedence.
See the x509v3_config(5) manual page for details of the extension section format.
The arg must be formatted as "/type0=value0/type1=value1/type2=...". Special characters may be escaped by "\" (backslash), whitespace is retained. Empty values are permitted, but the corresponding type will not be included in the resulting certificate. Giving a single "/" will lead to an empty sequence of RDNs (a NULL-DN). Multi-valued RDNs can be formed by placing a "+" character instead of a "/" between the AttributeValueAssertions (AVAs) that specify the members of the set. Example:
"/DC=org/DC=OpenSSL/DC=users/UID=123456+CN=John Doe"
In practice removeFromCRL is not particularly useful because it is only used in delta CRLs which are not currently implemented.
The section of the configuration file containing options for this
command is found as follows: If the -name command line option is
used, then it names the section to be used. Otherwise the section to be used
must be named in the default_ca option of the ca section of
the configuration file (or in the default section of the configuration
file). Besides default_ca, the following options are read directly
from the ca section:
RANDFILE
preserve
msie_hack With the exception of RANDFILE, this is probably a bug and
may change in future releases.
Many of the configuration file options are identical to command line options. Where the option is present in the configuration file and the command line the command line value is used. Where an option is described as mandatory then it must be present in the configuration file or the command line equivalent (if any) used.
Note that it is valid in some circumstances for certificates to be created without any subject. In the case where there are multiple certificates without subjects this does not count as a duplicate.
For convenience the values ca_default are accepted by both to produce a reasonable output.
If neither option is present the format used in earlier versions of OpenSSL is used. Use of the old format is strongly discouraged because it only displays fields mentioned in the policy section, mishandles multicharacter string types and does not display extensions.
The main use of this option is to allow a certificate request to supply values for certain extensions such as subjectAltName.
The policy section consists of a set of variables corresponding to certificate DN fields. If the value is "match" then the field value must match the same field in the CA certificate. If the value is "supplied" then it must be present. If the value is "optional" then it may be present. Any fields not mentioned in the policy section are silently deleted, unless the -preserveDN option is set but this can be regarded more of a quirk than intended behaviour.
The input to the -spkac command line option is a Netscape signed public key and challenge. This will usually come from the KEYGEN tag in an HTML form to create a new private key. It is however possible to create SPKACs using openssl-spkac(1).
The file should contain the variable SPKAC set to the value of the SPKAC and also the required DN components as name value pairs. If you need to include the same component twice then it can be preceded by a number and a '.'.
When processing SPKAC format, the output is DER if the -out flag is used, but PEM format if sending to stdout or the -outdir flag is used.
Note: these examples assume that the directory structure this command assumes is already set up and the relevant files already exist. This usually involves creating a CA certificate and private key with openssl-req(1), a serial number file and an empty index file and placing them in the relevant directories.
To use the sample configuration file below the directories demoCA, demoCA/private and demoCA/newcerts would be created. The CA certificate would be copied to demoCA/cacert.pem and its private key to demoCA/private/cakey.pem. A file demoCA/serial would be created containing for example "01" and the empty index file demoCA/index.txt.
Sign a certificate request:
openssl ca -in req.pem -out newcert.pem
Sign an SM2 certificate request:
openssl ca -in sm2.csr -out sm2.crt -md sm3 \ -sigopt "distid:1234567812345678" \ -vfyopt "distid:1234567812345678"
Sign a certificate request, using CA extensions:
openssl ca -in req.pem -extensions v3_ca -out newcert.pem
Generate a CRL
openssl ca -gencrl -out crl.pem
Sign several requests:
openssl ca -infiles req1.pem req2.pem req3.pem
Certify a Netscape SPKAC:
openssl ca -spkac spkac.txt
A sample SPKAC file (the SPKAC line has been truncated for clarity):
SPKAC=MIG0MGAwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAn7PDhCeV/xIxUg8V70YRxK2A5 CN=Steve Test emailAddress=steve@openssl.org 0.OU=OpenSSL Group 1.OU=Another Group
A sample configuration file with the relevant sections for this command:
[ ca ] default_ca = CA_default # The default ca section [ CA_default ] dir = ./demoCA # top dir database = $dir/index.txt # index file. new_certs_dir = $dir/newcerts # new certs dir certificate = $dir/cacert.pem # The CA cert serial = $dir/serial # serial no file #rand_serial = yes # for random serial#'s private_key = $dir/private/cakey.pem# CA private key default_days = 365 # how long to certify for default_crl_days= 30 # how long before next CRL default_md = md5 # md to use policy = policy_any # default policy email_in_dn = no # Don't add the email into cert DN name_opt = ca_default # Subject name display option cert_opt = ca_default # Certificate display option copy_extensions = none # Don't copy extensions from request [ policy_any ] countryName = supplied stateOrProvinceName = optional organizationName = optional organizationalUnitName = optional commonName = supplied emailAddress = optional
Note: the location of all files can change either by compile time options, configuration file entries, environment variables or command line options. The values below reflect the default values.
/usr/local/ssl/lib/openssl.cnf - master configuration file ./demoCA - main CA directory ./demoCA/cacert.pem - CA certificate ./demoCA/private/cakey.pem - CA private key ./demoCA/serial - CA serial number file ./demoCA/serial.old - CA serial number backup file ./demoCA/index.txt - CA text database file ./demoCA/index.txt.old - CA text database backup file ./demoCA/certs - certificate output file
The text database index file is a critical part of the process and if corrupted it can be difficult to fix. It is theoretically possible to rebuild the index file from all the issued certificates and a current CRL: however there is no option to do this.
V2 CRL features like delta CRLs are not currently supported.
Although several requests can be input and handled at once it is only possible to include one SPKAC or self-signed certificate.
This command is quirky and at times downright unfriendly.
The use of an in-memory text database can cause problems when large numbers of certificates are present because, as the name implies the database has to be kept in memory.
This command really needs rewriting or the required functionality exposed at either a command or interface level so that a more user-friendly replacement could handle things properly. The script CA.pl helps a little but not very much.
Any fields in a request that are not present in a policy are silently deleted. This does not happen if the -preserveDN option is used. To enforce the absence of the EMAIL field within the DN, as suggested by RFCs, regardless the contents of the request' subject the -noemailDN option can be used. The behaviour should be more friendly and configurable.
Canceling some commands by refusing to certify a certificate can create an empty file.
This command was originally meant as an example of how to do things in a CA. Its code does not have production quality. It was not supposed to be used as a full blown CA itself, nevertheless some people are using it for this purpose at least internally. When doing so, specific care should be taken to properly secure the private key(s) used for signing certificates. It is advisable to keep them in a secure HW storage such as a smart card or HSM and access them via a suitable engine or crypto provider.
This command is effectively a single user command: no locking is done on the various files and attempts to run more than one openssl ca command on the same database can have unpredictable results.
The copy_extensions option should be used with caution. If care is not taken then it can be a security risk. For example if a certificate request contains a basicConstraints extension with CA:TRUE and the copy_extensions value is set to copyall and the user does not spot this when the certificate is displayed then this will hand the requester a valid CA certificate. This situation can be avoided by setting copy_extensions to copy and including basicConstraints with CA:FALSE in the configuration file. Then if the request contains a basicConstraints extension it will be ignored.
It is advisable to also include values for other extensions such as keyUsage to prevent a request supplying its own values.
Additional restrictions can be placed on the CA certificate itself. For example if the CA certificate has:
basicConstraints = CA:TRUE, pathlen:0
then even if a certificate is issued with CA:TRUE it will not be valid.
Since OpenSSL 1.1.1, the program follows RFC5280. Specifically, certificate validity period (specified by any of -startdate, -enddate and -days) and CRL last/next update time (specified by any of -crl_lastupdate, -crl_nextupdate, -crldays, -crlhours and -crlsec) will be encoded as UTCTime if the dates are earlier than year 2049 (included), and as GeneralizedTime if the dates are in year 2050 or later.
OpenSSL 1.1.1 introduced a new random generator (CSPRNG) with an improved seeding mechanism. The new seeding mechanism makes it unnecessary to define a RANDFILE for saving and restoring randomness. This option is retained mainly for compatibility reasons.
The -section option was added in OpenSSL 3.0.0.
The -multivalue-rdn option has become obsolete in OpenSSL 3.0.0 and has no effect.
The -engine option was deprecated in OpenSSL 3.0.
Since OpenSSL 3.2, generated certificates bear X.509 version 3, and key identifier extensions are included by default.
openssl(1), openssl-req(1), openssl-spkac(1), openssl-x509(1), CA.pl(1), config(5), x509v3_config(5)
Copyright 2000-2024 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <https://www.openssl.org/source/license.html>.
2025-01-06 | 3.4.0 |